Improving Low-Resource Neural Machine Translation With Teacher-Free Knowledge Distillation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Teacher-Student Framework for Zero-Resource Neural Machine Translation

While end-to-end neural machine translation (NMT) has made remarkable progress recently, it still suffers from the data scarcity problem for low-resource language pairs and domains. In this paper, we propose a method for zero-resource NMT by assuming that parallel sentences have close probabilities of generating a sentence in a third language. Based on this assumption, our method is able to tra...

متن کامل

Neural machine translation for low-resource languages

Neural machine translation (NMT) approaches have improved the state of the art in many machine translation settings over the last couple of years, but they require large amounts of training data to produce sensible output. We demonstrate that NMT can be used for low-resource languages as well, by introducing more local dependencies and using word alignments to learn sentence reordering during t...

متن کامل

Improving Low-Resource Neural Machine Translation with Filtered Pseudo-Parallel Corpus

Large-scale parallel corpora are indispensable to train highly accurate machine translators. However, manually constructed large-scale parallel corpora are not freely available in many language pairs. In previous studies, training data have been expanded using a pseudoparallel corpus obtained using machine translation of the monolingual corpus in the target language. However, in lowresource lan...

متن کامل

Improving a Multi-Source Neural Machine Translation Model with Corpus Extension for Low-Resource Languages

In machine translation, we often try to collect resources to improve performance. However, most of the language pairs, such as Korean-Arabic and Korean-Vietnamese, do not have enough resources to train machine translation systems. In this paper, we propose the use of synthetic methods for extending a low-resource corpus and apply it to a multi-source neural machine translation model. We showed ...

متن کامل

Ensemble Distillation for Neural Machine Translation

Knowledge distillation describes a method for training a student network to perform better by learning from a stronger teacher network. In this work, we run experiments with different kinds of teacher networks to enhance the translation performance of a student Neural Machine Translation (NMT) network. We demonstrate techniques based on an ensemble and a best BLEU teacher network. We also show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3037821